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Abstract

We propose a new technique to implement solid wall boundary conditions for steady two-dimensional Euler equa-
tions for problems in curved geometries. The technique is to be used with high-order methods on unstructured,
straight-sided element meshes. By modeling flow around a physical rather than computational geometry, significant
improvement in quality of the solution is achieved. The technique does not require a complex reconstruction and is easy
to implement. Examples are presented to demonstrate validity of the new approach.
� 2005 Elsevier Inc. All rights reserved.
1. Introduction

Correct treatment of boundary conditions is crucial for developing accurate numerical schemes. Difficul-
ties can arise when the numerical boundary does not coincide with the physical boundary. Large errors may
arise in the boundary layer and pollute the solution inside the domain. This is especially important for higher-
order methods, where errors due to geometrical approximation may dominate the discretization error, ren-
dering the use of a higher-order scheme useless [5,18]. In this paper, we focus on implementation of solid
wall boundary conditions for two-dimensional compressible inviscid Euler equations in curved geometries.
Though our results are applicable to any higher-order scheme, we are primary interested in the discontin-
uous Galerkin method (DGM). It has been shown [4,5] that the DGM for flow problems is highly sensitive
to the accuracy of the boundary representation. Our goal is to improve the accuracy of the boundary
conditions without resorting to a full fledged higher-order representation of the geometry.
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The most popular way to impose boundary conditions at solid walls for flow problems is the reflection
technique, where an extra row (rows) of ghost cells is added behind the wall. All interior solution compo-
nents are reflected symmetrically to ghost states except for the normal velocity which is negated; then a Rie-
mann problem is solved on the boundary. Due to the symmetry of the reflection, only pressure contributes
to the boundary flux. As a modification of the method, pressure obtained from interior values might be
used directly in computation of the boundary flux eliminating the extra work required to construct ghost
cells. With the DGM, this results in a slightly less accurate solution. The method works well when a wall is
straight and leads to large errors when it is not. The inaccuracy of the approach when applied to curved
geometries was demonstrated by Moretti [12] in the late 1960s. The normal derivative of pressure at the
boundary is zero for a numerical solution and is far from it for the exact one. Thus, the reflecting boundary
conditions are physically wrong for a curved geometry.

In general, more accurate techniques take into account the curvature of the solid wall instead of treating
it locally as a straight line. Rizzi [14] incorporates curvature into boundary conditions by streamline differ-
entiating the normal velocity equation, where the normal is taken relative to the physical geometry. Pres-
sure at the boundary points is extrapolated from interior values of density, velocity, pressure, and the rate
of change of the normal vector. More recent work of Dadone [8] extends this result. Pressure at the ghost
cells is computed by Rizzi�s formula and then used to obtain density and tangential velocity from the con-
stant entropy and total-enthalpy vortex model. The normal component of velocity is computed according
to the reflecting technique. Two rows of ghost cells are required for the second-order finite volume method.
The solutions obtained with this approximation are more accurate at the expense of loss of conservation.
These boundary conditions are applicable only to non-transient problems.

Bassi and Rebay [4,5] showed that DGM solutions are more sensitive to the error arising at curved
boundaries than those obtained with finite volume methods of the same (theoretical) order of accuracy.
Moreover, the solution may become less accurate as the order of approximation increases (Section 3).
This is especially unfortunate since the DGM is considered an extension of the finite volume method to
higher orders. As such, it can be computationally very efficient in regions where the solution is smooth.
For example, to capture the structure of the solution near the leading edge of an airfoil. Bassi and Re-
bay [4,5] concluded that a high-order approximation of the physical geometry is a must for obtaining a
meaningful solution. This is the point of view currently accepted by the DGM community [6]. Higher-
order geometrical approximation is achieved by using mesh elements with one or more curved sides,
usually described by polynomials. It has been shown numerically [5] that with the reflecting boundary
conditions the order of the polynomials approximating the geometry must be at least equal to the order
of the polynomial basis but not less than two in order to achieve the optimal rate of convergence. This
is similar to the finite element method for elliptic equations where errors due to discretization of the
domain arise in the boundary layer and may dominate the discretization error of the numerical scheme
there. Choosing the degree of the polynomial approximating the boundary equal to the order of the
basis functions is proven to be sufficient for obtaining the optimal rate of convergence in the energy
norm [18].

However, curved element meshes are associated with extra computational expenses. First, curved ele-
ments need to be mapped onto the computational straight-sided element by a nonlinear mapping. To ac-
count for the non-constant Jacobian, a higher-order integration scheme must be used to compute volume
and boundary integrals. Additionally, basis functions must be created and stored for each curved element
when an orthogonal basis is used. The quadrature-free form of the DGM avoids a nonlinear mapping by
employing canonical elements with curved sides [3]. When an adaptive scheme with p-refinement is used,
either the geometrical order must be high enough from the beginning or a new, higher-order mesh element
must be created every time a boundary element is marked for p-refinement. However, the biggest difficulty
is to discretize the domain with curved elements. It is often unrealistic to obtain curved-element meshes
for complicated geometries, especially in three dimensions. Moreover, most of the non-commercial
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mesh-generating software currently produces only linear elements. In the absence of readily available prod-
ucts, coding higher-order curved elements on one�s own may prove to be a tedious task.

This situation motivated us to seek a simpler technique. We start with an unstructured straight-sided
element mesh. Since we are modeling compressible inviscid flow around an object, we assume that the
streamlines follow the contours of the body. We require the numerical velocity at every boundary inte-
gration point to coincide with the streamline direction near the body surface, i.e., to be orthogonal to the
‘‘true’’ geometrical boundary rather than to the computational boundary. Instead of being tangential to
the edge of the element, the flow ‘‘leaves’’ the domain at an integration point and ‘‘returns’’ at the sym-
metric integration point (we use Gauss–Legendre quadrature where integration points are symmetric
about the center of an edge). It is reminiscent of the transpiration boundary conditions [13], which
are used to simulate a flow around a perturbed geometry when remeshing is considered impractical. Cur-
vature of a solid boundary is either obtained from the geometrical description of the object or approx-
imated locally using data from neighboring elements. Setting up a ghost state, we reflect the velocity with
respect to the ‘‘true’’ normal and map the other components of the solution symmetrically. However, the
normal used in computing the boundary flux is the usual normal to the computational element, constant
along the edge.

While our curvature boundary conditions (CBC) are more accurate than the reflecting boundary con-
ditions (RBC) as measured by errors in solution components and quantities of interest, they are not
conservative. Non-conservative schemes are usually treated with caution because they may result in
an incorrect shock position and strength. However, such schemes have been successfully used in some
situations. In recent years, work has appeared where authors advocate loss of conservation as a lesser
evil. For example, by applying a non-conservative scheme near the interface of two fluids, Karni [11]
eliminates large spurious oscillations. The dramatic improvement in the quality of the solution out-
weighs the (very small) loss of conservation. As we have already mentioned, the boundary conditions
of Dadone [8] for the finite volume method are also non-conservative. As it is the case with [11], the
resulting scheme is conservative except for boundary elements, i.e., the loss of conservation occurs in a
lower dimension. The loss of mass in our experiments is almost negligible (the worst is 0.0004% for a
round body and a very coarse mesh). The non-penetration boundary conditions are satisfied in the limit
as the total mass loss converges to zero under h- and p-refinement. On the other side, the RBC do not
result in a numerical scheme properly modeling the exact solution on a straight-sided element mesh. As
we show on an example of a flow around a circular cylinder (Section 3), the reflecting technique results
in unsteady flow with vortices attached to the back of a cylinder when the exact solution is a steady
irrotational flow. No reasonable mesh refinement eliminates the wake, and p-refinement actually de-
creases the quality of the solution. This makes the curvature boundary conditions preferential in our
view.

The rest of the paper is organized as follows. Section 2 briefly describes the essential features of the
DGM. For more detail see [7] and references therein. The reflecting boundary conditions are discussed
in Section 3. The new curvature boundary conditions and their numerical implementation are introduced
in Section 4. Section 5 is devoted to numerical experiments. We show that the errors in solutions obtained
with the CBC are close to those obtained with exact boundary conditions (Example 5.1) or comparable to
those obtained on curved high-order meshes (Example 5.2) and exhibit the theoretical rate of convergence.
We find that the global aerodynamic constants for external flows are similar to described in the literature
(Example 5.3). Conclusions are in Section 6.
2. Discontinuous Galerkin formulation

We consider the two-dimensional Euler equations
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on a bounded domain X with appropriate well-posed boundary data prescribed on oX. As is custom-
ary, q is the density of the fluid, u and v are components of the velocity vector ~v, P is the pressure,
and E is the total energy. We assume the fluid to be an ideal polytropic gas satisfying the equation of
state
P ¼ ðc� 1Þ E � qk~vk2

2

 !
; ð1bÞ
where c is the adiabatic exponent, which was set to 1.4 for the numerical experiments.
We use the discontinuous Galerkin method in the formulation originally proposed by Cockburn and

Shu. Here, we provide a brief synopsis of the numerical scheme; see [7] and references therein for a detailed
analysis.

In order to describe the method, we write (1a) as a general conservation law
otuþ divFðuÞ ¼ 0; x 2 X; t > 0; ð2aÞ
u ¼ u0; t ¼ 0. ð2bÞ
We divide the problem domain X into a collection of non-overlapping elements
X ¼
[Nh

j¼1

Xj. ð3Þ
Then, we construct a Galerkin problem on element Xj by multiplying (2a) by a test function v 2 L2(Xj), inte-
grating the result on Xj, and using the Divergence Theorem to obtain
Z

Xj

votu dsþ
Z
oXj

vFðuÞ �~n ds�
Z
Xj

gradv � FðuÞ ds ¼ 0 8v 2 ðL2ðXjÞÞ4; ð4Þ
where~n is the normal vector to oXj. The solution u is approximated by a vector function Uj = (Uj, 1, Uj, 2,
Uj, 3, Uj, 4)

T, where
Uj;k ¼
XNp

i¼1

ci;k;jui; k ¼ 1; 2; 3; 4; ð5Þ
in a finite-dimensional subspace of the solution space. The basis fuig
Np

i¼1 is chosen to be orthonormal in
L2(Xj) [10], which will produce a multiple of the identity for the mass matrix on Xj.

Due to the discontinuous nature of the numerical solution, the normal flux Fn ¼ FðuÞ �~n, is not defined
on oXj. The usual strategy is to define it in terms of a numerical flux Fn(Uj,Uk) that depends on the solution
Uj on Xj and Uk on the neighboring element Xk sharing the portion of the boundary oXjk common to both
elements. In our experiments, we used the Roe numerical flux [15]. Finally, the L2 volume and surface inner
products in (4) are computed using 2p and 2p + 1 order accurate Gauss quadratures [10], respectively,
where p is the order of the orthonormal basis. The resulting system of ODEs can be solved element-wise
when an explicit numerical scheme is used. We use an explicit total variation bounded Runge–Kutta scheme
of an appropriate order [7].
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3. Reflecting boundary conditions

The reflecting boundary conditions state that no flow penetrates a solid wall, i.e., the normal velocity at
the wall is zero. Depending on the numerical scheme, a ghost state or cell is created on the part of the
numerical boundary oXw corresponding to the solid wall. With the DGM, a ghost state is created at every
integration point on oXw, where all components of the ghost solution are set equal to the corresponding
interior values at the same point except for the normal velocity, which is negated. Then, the interior and
ghost states are passed to a Riemann solver. Due to the symmetry of the reflection, the solution to the
Riemann problem at integration point xj 2 oXw satisfies [17]
Fig. 1.
bottom
~vðxjÞ �~n ¼ 0. ð6Þ

This approach works well for straight-sided bodies. However, results are inferior when a physical geom-

etry is more complex. As an example, we consider a Mach 0.38 flow around a circular cylinder on a 128 · 32
O-grid mesh. A detailed description of the problem is given in Example 5.2. The computations were
initiated with the free stream values. After decreasing three orders of magnitude to the 10�2–10�3 range,
residuals given by (20) oscillated in this range and failed to converge further. Computations were stopped
after no improvement was observed for a number of time steps. Mach isolines are presented in Fig. 1, left,
for p = 1,2,3 with an increment DM = 0.038. Plotting was performed using data from inside of mesh
elements. Since the numerical solutions are discontinuous across interelement boundaries, the isolines
Mach isolines (left) and density at the top of the cylinder (right) with reflecting boundary conditions. p = 1,2,3, from top to
. A wake is formed at the rear; the solution does not achieve a steady symmetric irrotational form.



Fig. 2. Velocity field near the outflow part of a cylinder. p = 3, reflecting boundary conditions.
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appear as broken lines where the solution changes rapidly from an element to its neighbor. The quality of
the numerical solutions is visibly poor. They do not appear to be good approximations to the exact solu-
tion, which is steady, smooth, subcritical and symmetric, with streamlines following contours of the body
[2]. The numerical solutions, however, are unsteady and may become transonic with higher (p = 2,3) orders
of approximation. Instead of ‘‘wetting’’ the surface, the flow separates from the back of the cylinder form-
ing a wake. A close look at the velocity plot in Fig. 2 reveals two vortices at the back side of the cylinder.
Remarkably, the quality of solutions deteriorate as the order of approximation increases: the solutions
become less symmetric and the wake increases.

The likely explanation is that by increasing the order of approximation, we obtain a more accurate solu-
tion to a wrong problem: flow around a polygon. Rarefaction waves are formed at the vertices of the poly-
gon [2]. These are better resolved with higher p. Density plots near the top of the cylinder (with the
background mesh) in Fig. 1, right, demonstrate concentration of the error near vertices. Isolines take a
wave-like shape instead of a smooth curve. This becomes increasingly so and affects solution in further
parts of the domain as p increases.
4. Curvature boundary conditions

Meshing a non-polygonal shaped domain necessarily introduces an error. As we have seen, the DGM is
highly sensitive to the error due to approximation of a curved geometry by a straight-sided element mesh.
This error may dominate the discretization error of the scheme and lead to a wrong solution. We seek to
impose boundary conditions which would take this into consideration and model internal or external flow
more accurately.

We start by observing that the ‘‘no flow through a wall’’ rule refers to the physical boundary. Thus, (6)
does not model the non-penetration boundary conditions properly when a computational geometry does
not coincide exactly with the physical one. Imposing no flow through the physical boundary in this case
means allowing some flow through the computational boundary. Modeling compressible inviscid flow,
we assume that streamlines follow the contours of an object. This is equivalent to requiring the velocity
vector on the surface to be orthogonal to the normal to the surface. We assume this to be true in a small
vicinity to the surface and impose the following condition at every integration point:
~vðxÞ � ~NðxÞ ¼ 0; x 2 oXw
j ; ð7Þ
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where ~NðxÞ is the unit normal to the physical geometry at point x. Fig. 3 illustrates (7) for element Xj adja-
cent to the solid boundary.

In practice, an analytical description of the surface is usually not available. Thus, in order to evaluate the
boundary integral in (4) numerically, ~NðxÞ needs to be approximated at the integration points from the
available data. In our computations, we assumed that the only available information is the mesh itself.
We approximated the physical geometry by an arc of the circle passing through the vertices of oXw

j . The
radius of the circle is taken to be the average of the radii of two circles passing though three points: two
vertices of oXw

j and the vertex lying on the solid boundary immediately to the left or right of oXw
j . Using

the assumption that (7) is satisfied in close vicinity of the wall, ~N at xi, i = 1,2, . . .,nG, is computed as the
unit normal to the circle passing through xi and the symmetric Gauss–Legendre point xG � i with the center
at the same point as the circle approximating the boundary. Only when the number of integration points is
odd does ~N at the center of oXw

j coincide with the normal to the edge of the straight-sided element. The
process is illustrated in Fig. 4 for p = 4 approximation that requires 9th-order accurate numerical integra-
tion which we perform by the 5-point Gauss–Legendre rule. Possible sharp corners of the physical object
are dealt with by computing the dot product of the normal to the straight-sided edge~nj and the normals to
its neighbors. We assume a sharp corner, such as the cusp of the airfoil in Example 5.3, to be present if
~nj �~nneigh < 0. One sided approximation of the local curvature is used in this case.
boundary

N (x1 )

N (x2 )

u(x2 )

(x1 )

w
j

solid

j Ω
Ω

→

→

→

u→

Fig. 3. Curvature boundary conditions for the two point Gauss–Legendre integration rule. Velocity at points x1 and x2 is orthogonal
to the physical normals ~Nðx1Þ and ~Nðx2Þ.

N (x1 )

δΩ w
j

x1 x2 x3 x4 x5

N (x5 )N (x4 )N (x3 )N (x2 )
→ → → → →

Fig. 4. Construction of vectors ~N at boundary integration points xi, i = 1,2,. . .,5 for p = 4.
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We present three algorithms for imposing (7) numerically. We show in Section 5 that Algorithm I is less
accurate than the other two. Algorithms II and III result in almost identical solutions. We prefer Algorithm
II for its simplicity and use it in our numerical experiments in Section 5.

Before proceeding, we need to describe the notation used. Here, ~n ¼ ðn1; n2Þ and~t are unit normal and
tangential vectors to the computational boundary, ~N ¼ ðN 1;N 2Þ and ~T to the physical boundary, respec-
tively. Subscripts refer to projections on the respective vector. Superscripts are reserved to differentiate be-
tween different states at the same point: b denotes a boundary value, i.e., the value used to compute the
numerical flux Fn in (4), the superscript g refers to a ghost cell value, and variables without a superscript
denote interior values. According to this notation, vgn is the projection of ghost state velocity vector~vg onto
~n.

Algorithm I. This algorithm uses interior solution values to compute the numerical flux on the solid
boundary in (4). This eliminates the need to solve the Riemann problem on oXw

j . Condition (7) is enforced
by setting the projection of the velocity vector onto ~N to zero at each integration point. This is done locally
in the boundary solver without modifying the solution inside Xj.

Let~v ¼ ðu; vÞ be the velocity at integration point xi, i = 1,2, . . .,nG, on oXw
j . Computing the tangential

boundary velocity vbT ¼~vb �~T relative to the physical geometry as
vbT ¼ vT ¼ uN 2 � vN 1; ð8Þ

setting the normal boundary velocity vbN ¼~v � ~N to zero,
vbN ¼ 0 ð9Þ
and rotating (8, 9) back into (u,v) space, we force the boundary state velocity~vb at xi to satisfy (7). Using the
interior values of density and pressure for the other components of Ub

j ðxiÞ results in the solution vector at
xi, i = 1,2, . . .,nG, on oXw

j

qb ¼ q;

ub ¼ ðuN 2 � vN 1ÞN 2;

vb ¼ �ðuN 2 � vN 1ÞN 1;

P b ¼ P . ð10Þ
Then, (10) is used to compute the numerical flux in (4) as
F nðUb
j Þ ¼ ðqb~vb �~n; qbub~vb �~n; qbvb~vb �~n;~vb �~nðEb þ pbÞÞ. ð11Þ
Algorithm II. This algorithm seeks to improve on Algorithm I by constructing ghost states at integration
points on oXw

j and solving the Riemann problem there. The ghost state values are extrapolated from the
interior solution with the aim for Ub

j to satisfy (7). Although the velocity vectors obtained by Algorithms
I and II are similar, the pressure Pb and density qb resulting from the Riemann solver correspond to vbN ¼ 0,
not to the original velocity vector, and, thus, are more accurate.

We proceed as follows. A ghost state U
g
j ðxiÞ is created at each boundary integration point xi,

i = 1,2, . . .,nG. The velocity vector ~v ¼ ðu; vÞ is reflected to the ghost state with respect to ~T (Fig. 5).
The normal and tangential components relative to the physical geometry at the ghost state are given
by
vgNðxiÞ ¼ �vNðxiÞ; vgTðxiÞ ¼ vTðxiÞ; ð12Þ

while the density and pressure are copied exactly from the interior values at the same point. Rotating (12)
back into (u,v) space, we obtain the ghost state vector as
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Fig. 5. Velocity vector reflection. Algorithm II.
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qg ¼ q;

ug ¼ u½ðN 2Þ2 � ðN 1Þ2� � 2N 1N 2v;

vg ¼ v½ðN 1Þ2 � ðN 2Þ2� � 2N 1N 2u;

P g ¼ P . ð13Þ
Finally, the Riemann problem riemannðU;Ug;~nÞ is solved. Due to the identical pressure and density in the
ghost and interior states, the exact solution of the Riemann problem consists of either two shocks or two
rarefaction waves [17] with the normal velocity at the interface given by
vbN ¼ 1
2
ðvn þ vgnÞ. ð14Þ
The tangential velocity vbt equals to vt or vgt depending on the sign of ~v �~n. As a result, ~vb is not exactly
orthogonal to ~N . The error depends on the velocity vector and the curvature of the boundary. In all our
experiments, even on very coarse meshes, it was small and did not noticeably affect quality of the solution.
However, by slightly modifying the mapping of the velocity to the ghost state we can force Ub

j to satisfy (7)
exactly.

Algorithm III. This algorithm is a modification of Algorithm II, where the no flow through the physical
boundary is satisfied exactly. The velocity vector ~vb resulting from the solution of the Riemann problem
on oXw

j can be forced to satisfy (7) by requiring vgt ¼ vt and reflecting vn with respect to ~T (Fig. 6)
g

nN

T

u b

x i

→

u
→

ua
→

→→

→

Fig. 6. Velocity vector reflection. Algorithm III.
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vgn ¼ vn � 2ðvn � sgnðvnÞjvtj tan aÞ; ð15Þ

where a is the angle between ~N and~n and the two normals point to the same side of oXw

j , i.e., ð~N �~nÞ > 0.
After rotating (15) back into (u,v) space, the ghost state is computed as
qg ¼ q;

ug ¼ vgnn1 þ vgt n2; ð16Þ
vg ¼ vgnn2 � vgt n1;

P g ¼ P . ð17Þ
Again, the Riemann problem riemannðU;Ug;~n) is solved at xi, i = 1,2, . . .,nG.
Although the velocity vector resulting from Algorithm III should be more accurate than one obtained

with Algorithm II, the algorithms performed nearly identically in our experiments. We should note, how-
ever, that condition (7) is not exact by itself due to the approximate nature of ~N for a general non-circular
geometry. We preferred Algorithm II for its simplicity. It was used in numerical experiments in Section 5
unless otherwise indicated. The comparative performance of the three algorithms is discussed in Example
5.1.
5. Numerical examples

In order to demonstrate the new method, we present several examples. The results were obtained by
using a time-dependent DG code and integrating until a steady state was reached. Plotting was done using
data from inside of elements; no smoothing was applied. The discontinuous nature of the numerical solu-
tion will in this case result in a broken pattern of isolines when jumps in the solution values across inter-
element boundaries are large.

5.1. Supersonic vortex

We consider an isentropic supersonic flow between two concentric circular arcs of radii ri = 1 and
ro = 1.384 in the first quadrant, a test problem found in [1]. The exact density in terms of radius r is given
by
q ¼ qi 1þ c� 1

2
M2

i 1� ri
r

� �2� �� �ð1=ðc�1ÞÞ

. ð18Þ
The velocity and pressure are given by
k~vk ¼ ciM i

r
; P ¼ qc

c
; ð19Þ
where ci is the speed of sound on the inner circle. The Mach number on the inner circle Mi is set to 2.25 and
the density qi to one.

We solve the problem on a sequence of unstructured triangular meshes containing 140, 620 and 2406
elements (Fig. 7). All computations were performed until solution coefficients reached a steady state,
defined as the residual
R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNh

j¼1

X4
k¼1

XNp

i¼1

ðcnþ1
i;k;j � cni;k;jÞ

2

vuut ð20Þ



Fig. 7. The sequence of meshes used for supersonic vortex.
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being less than 10�15, where cni;k;j is a solution coefficient on Xj given by (5) at time step n. We measure the
exact L2 error in density and pressure for each of the proposed algorithms as well as for the reflecting
boundary conditions. For comparison, we also measure the errors when the exact boundary conditions
are applied, i.e., when the exact solution is used in computing the flux on the boundary. The results are
reported in Tables 1 and 2. The errors associated with Algorithms I, II, and III are close to those of the
solutions obtained with the exact boundary conditions, indicating that the part of the error due to the
boundary conditions is small. Algorithms II and III perform the best and are almost identical, Algorithm
L r for supersonic vortex

N p

p = 1 p = 2 p = 3 p = 4

Error r Error r Error r Error r

Exact boundary conditions

140 3.34E � 03 – 2.06E � 04 – 5.38E � 06 – 3.21E � 07 –
620 9.35E � 04 1.84 3.09E � 05 2.74 4.13E � 07 3.70 1.44E � 08 4.48

2406 2.31E � 04 2.02 3.73E � 06 3.05 2.56E � 08 4.01 5.54E � 10 4.70

Algorithm I

140 4.43E � 03 – 2.61E � 04 – 6.99E � 06 – 4.09E � 07 –
620 1.09E � 03 2.02 4.76E � 05 2.46 5.40E � 07 3.69 1.81E � 08 4.50

2406 2.45E � 04 2.15 5.48E � 06 3.12 3.34E � 08 4.02 7.26E � 10 4.64

Algorithm II

140 4.01E � 03 – 2.63E � 04 – 6.61E � 06 – 4.04E � 07 –
620 1.03E � 03 1.96 4.43E � 05 2.57 4.81E � 07 3.78 1.84E � 08 4.46

2406 2.38E � 04 2.11 4.91E � 06 3.17 3.06E � 08 3.97 6.98E � 10 4.72

Algorithm III

140 3.98E � 03 – 2.63E � 04 – 6.64E � 06 – 4.05E � 07 –
620 1.03E � 03 1.95 4.44E � 05 2.57 4.81E � 07 3.79 1.86E � 08 4.44

2406 2.37E � 04 2.12 4.92E � 06 3.17 3.06E � 08 3.97 6.99E � 10 4.73

Reflecting boundary conditions

140 4.74E � 02 – 6.05E � 02 – 6.63E � 02 – 7.60E � 02 –
620 1.50E � 02 1.66 1.89E � 02 1.68 2.41E � 02 1.46 3.02E � 02 1.33

2406 6.32E � 03 1.25 7.71E � 03 1.29 9.10E � 03 1.41 1.17E � 02 1.37



Table 2
L2 errors in density and rates of convergence r for supersonic vortex

N p

p = 1 p = 2 p = 3 p = 4

Error r Error r Error r Error r

Exact boundary conditions

140 4.04E � 03 – 1.89E � 04 – 6.75E � 06 – 5.34E � 07 –
620 1.19E � 03 1.76 2.72E � 05 2.80 6.21E � 07 3.44 3.65E � 08 3.87
2406 2.95E � 04 2.01 3.30E � 06 3.04 3.97E � 08 3.97 9.12E � 10 5.32

Algorithm I

140 5.30E � 03 – 2.42E � 04 – 7.36E � 06 – 5.69E � 07 –
620 1.50E � 03 1.82 4.00E � 05 2.60 6.48E � 07 3.51 3.71E � 08 3.94
2406 3.53E � 04 2.09 4.61E � 06 3.12 4.17E � 08 3.96 9.72E � 10 5.25

Algorithm II

140 4.65E � 03 – 2.26E � 04 – 7.32E � 06 – 5.70E � 07 –
620 1.37E � 03 1.76 3.66E � 05 2.63 6.30E � 07 3.54 3.69E � 08 3.95
2406 3.29E � 04 2.06 4.11E � 06 3.15 4.05E � 08 3.96 9.52E � 10 5.28

Algorithm III

140 4.64E � 03 – 2.26E � 04 – 7.34E � 06 – 5.70E � 07 –
620 1.37E � 03 1.76 3.66E � 05 2.63 6.30E � 07 3.54 3.70E � 08 3.95
2406 3.29E � 04 2.06 4.11E � 06 3.15 4.06E � 08 3.96 9.52E � 10 5.28

Reflecting boundary conditions

140 3.32E � 02 – 4.32E � 02 – 4.75E � 02 – 5.05E � 02 –
620 1.05E � 02 1.66 1.35E � 02 1.68 1.72E � 02 1.47 2.14E � 02 1.24
2406 4.39E � 03 1.26 5.43E � 03 1.31 6.43E � 03 1.42 8.23E � 03 1.38
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I is slightly less accurate. The convergence rates are the same as with the exact boundary conditions. The
rates of convergence do not perfectly correspond to the number of elements due to the fact that the meshes
used are not structured and not nested. The errors with the RBC are significantly larger. Moreover, a re-
duced h3/2 convergence rate is observed under h-refinement for all p, while p-refinement results in decreased
accuracy.

5.2. Flow around a circular cylinder

We consider a subsonic flow at Mach number M1 = 0.38 on four O-grid meshes having 16 · 4, 32 · 8,
64 · 16 and 128 · 32 points (Fig. 8). The first number refers to the number of points in the circular direc-
tion, the second describes the number of concentric circles in the mesh. The radius of the cylinder is
r0 = 0.5, the domain is bounded by r32 = 20, the radii of concentric circles for 128 · 32 mesh are set up
as in [9]
rj ¼ r0 1þ 2p
128

Xj�1

k¼0

ak
 !

; j ¼ 1; 2; . . . ; 32; ð21Þ
with a = 1.1648336. The coarser meshes are obtained by successively unrefining the finest mesh. All plots
for this example are shown in the [�2,2] · [�2,2] square. First, we solve the problem on the sequence of
meshes with p = 1 and plot Mach isolines in Fig. 9 with DM = 0.038. The plots visually compare well with
those obtained by Bassi and Rebay [5] and are significantly more accurate than ones obtained with the RBC



Fig. 8. 16 · 4, 32 · 8, 64 · 16, and 128 · 32 meshes around a circular cylinder.
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(Section 3). The solution obtained on the finest mesh is symmetric and does not have a visible wake. Next,
we perform p-refinement on the coarsest mesh and plot Mach isolines with the same DM for p = 1,2,3,4 in
Fig. 10. The quality of the solution clearly improves as p increases. The solution corresponding to p = 4 is
similar to one obtained on the finest mesh with p = 1. In all our experiments, the velocity vectors near the
surface followed the contour of the cylinder. As an illustration, we plot in Fig. 11 the velocity profile and a
zoom near the rear stagnation point for the p = 2 solution on the 32 · 8 mesh. The plots reveal a smooth
flow that ‘‘wets’’ the surface.

To quantify our findings, we measure L2 errors in entropy �ent defined as
�ent ¼
P
P1

q
q1

� �c

� 1;

�
ð22Þ
where P1 and q1 are pressure and density of the free stream, respectively. The results with h- and p-refine-
ment are reported in Table 3. Numbers compare well with [5]. Further, we present two aerodynamic quan-
tities: the pressure coefficient Cp
Cp ¼
P � P1

0.5q1k~v1k
2

ð23Þ



Fig. 9. Mach isolines on 16·4, 32·8, 64·16, and 128·32 meshes from left to right and fromp= 1, D M = 0 . 0 3 8L . K r i v o d
and the total pressure loss coefficient defined as a ratio of the total pressure Pt
top to bottom. Circular cylinder,. o n
P t ¼ P 1þ c� 1

2
M2

� �c=ðc�1Þ

ð24Þ
at a point to the total pressure of the free stream. These are reported under h- and p-refinement in Figs. 12
and 13. The total pressure loss coefficient on the surface converges to unity pointwise under h- and p-refine-
ment (Fig. 13); additionally, the convergence history of the error in the total pressure on the surface in the
L2 norm is presented in Fig. 14. Lift coefficients in the experiments were ranging from 10�10 to 10�15, con-
firming that the solutions possess vertical symmetry. The mass loss, defined as the total flux through the
solid boundary (or farfield boundary), was insignificant in all experiments. It ranged from 3.3 · 10�8 to
4.6 · 10�3 in absolute values. This corresponds to the 2.7 · 10�9% to 3.8 · 10�4% range. The convergence
history under h- and p-refinement is reported in Fig. 15.

In our experiments, the CBC did not slow the speed of reaching a steady state. The number of time steps
needed for convergence increased, as expected, in inverse proportion to either the reduced element size
(h-refinement) or the CFL constraint (p-refinement). The number of time steps in our computations is
comparable to those in [5] using higher-order elements. Comparing solutions obtained under h- and
o v a , M . B e r g e r / J o u r n a l o f C o m p u t a t i o n a l P h y s i c s 2 1 1 ( 2 0 0 6 ) 4 9 2 – 5 1 2 5 0 5



Fig. 10. Mach isolines under p-refinement on 16 · 4 grid. Circular cylinder, p = 1,2,3,4 from left to right and from top to bottom,
DM = 0.038.

Fig.115 Velocitynearsurface(left)andzoomatastagnationpoint(right).Circularcylinder,p= 2 , 3 2 · 8m e s h . 5 0 6 L . K r i v o d o n ov a , M .B e r g e r / J o u r n a l o f C o m p u t a t i o n alP h y s i c s2 1 1 ( 2 0 0 6 )4 9 2 – 5 1 2



Table 3
L2 errors in entropy and convergence rates for the circular cylinder

N p

p = 1 p = 2 p = 3

�ent r �ent r �ent r

16 · 4 5.12E � 02 – 6.87E � 03 – 1.00E � 03 –
32 · 8 9.28E � 03 2.46 4.37E � 04 3.97 5.41E � 05 4.21
64 · 16 1.42E � 03 2.71 3.75E � 05 3.54 3.55E � 06 3.93
128 · 32 2.09E � 04 2.76 4.05E � 06 3.21 2.43E � 07 3.87
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Fig. 12. Pressure coefficient on the surface under h-refinement with p = 1 (left) and p-refinement on the coarsest mesh (right). Circular
cylinder, (p + 1) points per surface edge plotted, N is the number of elements in a mesh.
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Fig. 13. Total pressure loss coefficient on the surface: h-refinement with p = 1 (left) and p-refinement on the coarsest mesh (right).
Circular cylinder, (p + 1) points per surface edge plotted, N is the number of elements in a mesh.
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p-refinement, we notice that the solution on the finest mesh with p = 1 and the solution on the coarsest
mesh with p = 4 are very close quantitatively and qualitatively. However, the number of degrees of freedom
increases significantly faster under h-refinement (Fig. 14). As a result, the solution with p = 4 on 16 · 4
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Fig. 14. L2 error in total pressure on the surface as a function of degrees of freedom, h- and p-refinement, circular cylinder.
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Fig. 15. Total mass loss as a function of degrees of freedom, h- and p-refinement, circular cylinder.
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mesh required 40 times less CPU time than the linear approximation on the finest mesh. The advantage of
the higher-order method is self-evident here.

We performed numerical experiments with flow around elliptic cylinders that produced qualitatively sim-
ilar results. They are not reported here to save space.

5.3. Flow around NACA0012 airfoil

In contrast with the previous examples, where the exact boundary was described by circles, an error is
introduced by the numerical approximation of the normals to the physical boundary for a NACA0012. It
does not appear to affect the accuracy much. The only change that was made for this example was to make
sure that one mesh point was located exactly at the end point of the airfoil. As already described in Section
4, the curvature of the two boundary elements containing the end point was computed using one-sided
approximation, i.e., involving only one adjacent boundary edge lying on the same (upper or lower) half
of the airfoil. A more sophisticated reconstruction of the geometry might be necessary for more complex
cases; see for example [16].
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The surface of the NACA0012 airfoil is given by
y ¼ �5tð0.2969
ffiffiffi
x

p
� 0.126x� 0.3516x2 þ 0.2843x3 � 0.1015x4Þ; ð25Þ
with t = 0.12. We solve a subcritical problem with p = 2 on the 2960 element unstructured mesh with 102
elements on the surface shown in Fig. 16. The mesh is not symmetric with respect to the chord of the airfoil.
The free stream Mach number is M1 = 0.63 and the angle of attack a = 2�. The calculations were started
with the uniform free stream and stopped when residuals reached the machine precision. The Mach and
pressure coefficient isolines are shown in Fig. 17 with DM = 0.05 and DCp = 0.1, the wall distributions
of these quantities are presented in Fig. 18. The isolines around the trailing edge are smooth, without a
cusp, implying insignificant spurious entropy production. The maximum entropy error is 1.3 · 10�3, the
entropy isolines are shown in Fig. 19. The total mass loss is 1.8 · 10�3 in absolute value. Next, we compute
the lift and drag coefficients as
CD

CL

� �
¼

cos a sin a

� sin a cos a

� �
Cx

Cy

� �
; ð26Þ
Fig. 16. Mesh around NACA0012.

Fig. 17. Mach number (left) and �Cp (right) isolines, NACA0012, M1 = 0.63, a = 2�, DM = 0.05, DCp = 0.1.
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Fig. 18. Mach number (left) and �Cp (right) on the surface of NACA0012, M1 = 0.63, a = 2�.

Fig. 19. Entropy isolines, M1 = 0.63, a = 2�.
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where
Cx ¼
R
body Pn1 ds

0.5q1k~v1k
2L

; Cy ¼
R
body Pn2 ds

0.5q1k~v1k
2L

; ð27Þ
and L is the chord length. The computed aerodynamic coefficients CL = 0.333 and CD = 0.00015 compare
well with results in the literature [9].

Finally, we solve a transonic problem with the free stream Mach number 0.85 and the angle of attack 1�.
The lift coefficient for this problem is known to be very sensitive and difficult to compute accurately. We
computed the problem on the coarse grid containing 102 elements on the surface of the airfoil (Fig. 16).
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Fig. 20. Pressure coefficient �Cp, NACA0012 airfoil, M1 = 0.85, a = 1�, 102 points on the surface of the airfoil.
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The pressure coefficient on the surface is shown in Fig. 20. The lift and drag coefficients computed with a
scalar limiter are CL = 0.373 and CD = 0.0565. They are similar to the results reported in [9].
6. Discussion

We proposed a new method for imposing solid wall boundary conditions for curved geometries. The
method aims to approximate the flow around the physical rather than computational domain, thus elimi-
nating large errors in the boundary layer. Ghost states are created at integration points on the solid bound-
aries; the solution values at these points are set so that the velocity vector resulting from solving the
Riemann problem is tangent to the physical boundary. The curvature of the physical geometry is obtained
directly from the geometric description of the body, if it is available, or approximated locally on each ele-
ment using information from neighboring elements. We show on several examples that solutions obtained
with the curvature boundary conditions converge under h- and p-refinement. The rate of convergence for
the orders of approximation tested is O(hp + 1). Although the method is not conservative, the no flow
through the wall condition is achieved in the limit, with the total flux through the solid boundary being
small and converging to zero under refinement. The method does not depend on the order of approxima-
tion and as such can be very useful with p-refinement. It can be easily incorporated into an existing code
since no special treatment of boundary elements is required and no construction of ghost cells is necessary.

In future work, we will apply this method to more complicated geometries and more complicated flow
fields, for example time-dependent problems involving shocks. With these improved boundary conditions,
p-refinement is now a more practical option for practical problems. Combining p- and h-refinement would
be especially beneficial, and we believe is a fruitful area to investigate. Finally, extension to three-dimen-
sional problems is an important next step.
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